If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-33x-6.7=0
a = 2; b = -33; c = -6.7;
Δ = b2-4ac
Δ = -332-4·2·(-6.7)
Δ = 1142.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-\sqrt{1142.6}}{2*2}=\frac{33-\sqrt{1142.6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+\sqrt{1142.6}}{2*2}=\frac{33+\sqrt{1142.6}}{4} $
| 25c^2–60c+36=0 | | x*4+625=0 | | (11t+5)(6t+18)=0 | | -9x-6=7x=16 | | 3(2.4−1.1m)=2.7m+3.2 | | 5/2x+40=5x/2 | | 2(5)3+5y=13 | | 44=4(4n-1) | | 2(5)+3+5y=13 | | 3x=7+x-1 | | 3x-5x={5x2) | | 10g+5g-8g-6=8 | | 3(n+6)≥3n=8 | | 3(n+6)=3n=8 | | 10g-5g-8g-6=8 | | -3/2(f+6)=-6 | | x^2+11x-29.75=0 | | 11/100(y-4)+16/100=7/100y-40/100 | | 4(1.13)^x+2=11 | | 6x+5/6=7x+1/6 | | (1/5x)+(1/4x)=10 | | 1/2x+8=500 | | x(4x-25)=56 | | 50x+15(50)=335 | | z+3/4=8/3 | | .50x+.15(50)=33.5 | | a+14/5=13 | | 1/3m+5=-26 | | (33+x+32+x)(33+x-32-x)(.785)=225.1 | | -.6n+12.5=-2.75 | | 72÷c=18 | | 1/7x+7=9 |